Optical Interferometry with Separated Spacecraft

Mark Colavita Section 386

March 11, 1996

Agenda

- Introduction to optical interferometry
- Separated-spacecraft interferometry
- The DS3 New Millennium Interferometer (NMI) concept
- Technology readiness for separated-spacecraft interferometry

Optical interferometry

- Interferometers coherently combine the light from several small, separated apertures to yield the angular resolution of a telescope as large as the separation
- Advantages of interferometry
 - 1. Higher angular resolution than is possible with a telescope
 - Telescope are limited to ~10 m (HST: 2.4 m; Keck: 10 m)
 - Interferometer baselines can be very large
 - 2. Much lower cost than an equivalent filled-aperture telescope
 - Interferometers decouple sensitivity (collecting area) from angular resolution (baseline)

All imaging is an interferometric process

• A telescope is an interferometer which coherently combines the light from many small apertures which just happen to be adjacent to one another

Resolution: Sensitivity:

 B^2

Michelson interferometry

- A Fizeau interferometer is essentially a dilute-aperture telescope
- There are other ways to combine the light

- Interferometer can be planar (no focus")
- Simpler detector requirements when array is very dilute
- Allows for effective control of pathlength and wavefront tilt

What are the challenges to doing interferometry?

- Maintain structural rigidity
 - Pathlength control
 - Tilt control
- Pointing of overall instrument typically via an off-axis guide star
- Segmented telescope example:

Pathlength and tilt control with a Michelson interferometer

- Stability: ~10 nm

Note that tilt and pathlength control is done with small actuators inside the instrument

Imaging with a Michelson interferometer

- The interferometer measures the Fourier transform of the object
- At each baseline orientation, you measure one (u,v) point
- With many baseline orientations, you fill in the (u,v) plane
- The inverse transform is done with algorithms originally developed for radio astronomy (CLEAN, MEM)

Achieving long baselines in space with separated-spacecraft interferometry

- Advantages of separated-spacecraft interferometry
 - Extremely long baselines are possible: allows measurements unachievable with other techniques
 - Easy to change baseline length and orientation
 - Allows for incremental array expansions and maintenance

How to build a separated-spacecraft interferometer

What are the challenges to doing separated-spacecraft interferometry?

- Maintain structural rigidity
 - Pathlength control
 - Tilt control
- · Pointing of overall instrument
- I.e., same as for interferometry with single structures
- But
 - Now there's no structure
 - And you can't (easily) use off-axis guide stars for long baselines

New Millennium Interferometer (NMI) concept

- Proposed as third deep-space mission of the New Millennium Program
- Simplified separated-spacecraft interferometer that demonstrates key technologies, while still retaining science capabilities
- Major components
 - 3 spacecraft forming an interferometer constellation
 - 2 collector spacecraft, 100 m 1 km apart, collect and relay light
 - 1 central combiner spacecraft, which combines and detects the light from the two collectors

New Millennium Interferometer

NMI objectives

- Demonstrate technology for future separated-spacecraft interferometers
 - ExNPS (Exploration of Neighboring Planetary Systems)
 - The near-term ExNPS roadmap calls for a 70+ m infrared interferometer
 - Separated spacecraft interferometry is one approach to implement the long baselines
 - EMM (Earth-Mapping Mission)
 - Long-term goal of ExNPS program
 - Separated-spacecraft interferometry is only way to achieve required baselines
- Demonstrate technology to enable other future missions:
 Earth-observing constellations and other instruments

Mission

- Nominal orbit: low-disturbance SIRTF-type Earth-escape orbit with maximum distance of 0.1 AU
- Nominal launch vehicle: Delta-Lite (Medlite family)
- Mission lifetime: 6 months
- Observation scenario
 - The plane of the three spacecraft will be approximately perpendicular to the sun vector to provide a uniform thermal environment, to simplify stray-light baffling, and to allow for fixed solar arrays
 - All stars are observable over 6-month mission

NMI science

- NMI advantages over ground interferometers
 - Longer baselines: 100 m 1 km
 - Higher sensitivity: to 14 mag
 - Better calibration due to lack of an atmosphere
- NMI limitations
 - Restriction to two apertures
- NMI science
 - Amplitude measurements on astrophysical objects
 - Diameters of faint stars
 - Binary-star orbits
 - Potential resolution of a bright quasar

Mission-enabling technologies

What	Why
 Laser metrology Active optical systems (delay lines, fast steering mirrors) Formation flying controls 	 Maintain "structural" rigidity (pathlength and tilt control)
4. Kilometric optical gyro	Point the interferometer
5. Autonomous formation flying sensor	Initialize the constellation
6. Starlight combination and detection	 Make the interferometric measurement
7. Multi-spacecraft interferometer systems integration	Tie it all together

Starlight optics

- Collector spacecraft
 - Separation: 100 m to 1 km
 - Collect 12 cm beams of starlight
 - Gimbaled mirrors steer beams to combiner spacecraft
- Combiner spacecraft
 - Receives the 12-cm beams from the collectors
 - Compresses them to a more manageable size (3 cm)
 - Equalizes pathlengths using optical delay lines
 - Controls relative tilts using fast steering mirrors
 - Combines the beams and detects the interference signal

Starlight path

Laser metrology

making the constellation appear as a rigid body

- For a separated-spacecraft interferometer, laser metrology beams replace the missing structural elements, measuring length changes along the paths
 - This data can be used to control the position of the spacecraft to the requisite level (10 nm)
 - Or, the data can be used to compensate for motion of the spacecraft by using the optical delay line

Laser metrology on NMI

- NMI uses 5 laser metrology beams
 - 2 measure the position of the optical delay lines to <10 nm
 - 3 measure the inter-spacecraft distances to <10 nm
- Proposed metrology implementation
 - Diode-pumped solid-state laser with frequency modulators to provide a heterodyne source
 - Fiber optics to distribute the signal

Metrology path

Active optics

- Optical delay lines: range of ~2 cm, control to <10 nm
 - Space-qualified version of design used on ground interferometer
- Fast steering mirrors (3 cm, 0.2" resolution)
 - For control of beam tilt
- Articulating gimbals (12 cm, 0.05" resolution)
 - 3-axis, for directing starlight and KOG signals

Formation flying

- The positions of the combiner spacecraft act as the coarse stage of the optical delay lines
 - The optical delay lines have a range of ~1 cm
 - The spacecraft with their propulsion systems need to maintain position to this tolerance
- Other propulsion requirements
 - Baseline orientation changes
 - Baseline length changes
 - Retarget between objects
- Candidate propulsion systems: Cold-gas or Teflon Pulsed-Plasma Thrusters (PPTs)

Optical path control: Optical delay line + spacecraft control

actuator	resolution	range
PZT	1 nm	10 um
Voice coil	10 um	1 cm
Spacecraft	1 cm	

Mission-enabling technologies

What	Why
 Laser metrology Active optical systems (delay lines, fast steering mirrors) Formation flying controls 	 Maintain "structural" rigidity (pathlength and tilt control)
4. Kilometric optical gyro	Point the interferometer
5. Autonomous formation flying sensor	Initialize the constellation
6. Starlight combination and detection	 Make the interferometric measurement
7. Multi-spacecraft interferometer systems integration	Tie it all together

Kilometric Optical Gyro (KOG) pointing the constellation

- Laser metrology with path length compensation by the delay lines make the constellation appear as a rigid body
- This rigid body must now be stabilized in rotation so as not to blur the image
- Problem:
 - Existing inertial references aren't nearly accuracy enough
 - Guide stars are not generally available
 - Too faint
 - Too resolved
- One solution: Kilometric Optical Gyro (KOG)

What's a KOG?

- It's a fiber-optic gyro, where the sensing coil is replaced by the set of three spacecraft
- More fundamentally, it uses a pair of counter-propagating laser beams among the three spacecraft
 - The phase shift between them is a measure of the rotation rate of the constellation
 - It provides a true inertial reference

KOG, continued

- KOG beam is coaxial with starlight
 - Injected in the beam combiner
 - Reflects off second-surface diffraction gratings on the collector mirrors
- Achievable coherence times of several seconds, depending on baseline
- KOG also has a surprising feature
 - Sensitivity of the KOG is proportional to enclosed area, or the square of the baseline
 - Pointing requirement is linear with baseline
 - KOG works better for longer baselines

Kilometric Optical Gyro (KOG) path

Autonomous Formation Flying Sensor

- Before the laser metrology system can work, the spacecraft need to be positioned to within the acquisition range of the metrology
- Trade study was conducted among a number of options
- Best alternative: Autonomous Formation Flying Sensor
 - Each spacecraft transmits and receives a GPS-like code to provide relative spacecraft ranges and angles
 - Target accuracy: 1 cm distance, 1 arcmin angle

Other technologies

- Starlight sensing and detection
 - Space-qualifiable versions of beam combiners, detectors, as used in ground-based interferometers
- Integration testbed
 - A ground testbed to integrate the starlight, metrology, and KOG systems with operational software to validate operation before flight

Technology readiness, I

- Interferometry technology
 - Ground-based experience
 - Palomar Testbed Interferometer
 - NASA Interferometry Technology Program (ITP)
 - Developing components, testbeds, and tools for the Space Interferometry Mission SIM and other interferometers

Technology readiness, II

- DS3-unique technology
 - Identified as part of this concept study
 - To be developed as part of the DS3 program
 - Technology includes
 - Formation flying: controls, sensor, and testbed
 - Kilometric optical gyro
 - Integration testbed

Conclusion

- Interferometer constellations are the only approach to providing ultra-high resolutions as required for future science missions
- Constellations are enabled by several key technologies
 - Laser metrology, active optics, KOG, formation flying
- DS3 will demonstrate these technologies, enabling these future science missions

Acknowledgments

- Ken Lau
- Jim McGuire
- Mike Shao
- Bob Laskin
- Gary Blackwood
- Jeff Yu
- Randy Bartman
- Bonny Schumaker
- Steve Lichten
- Larry Young